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Exactly Solvable su(N ) Mixed Spin Ladders1
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It is shown that solvable mixed spin ladder models can be constructed from
su(N ) permutators. Heisenberg rung interactions appear as chemical potential
terms in the Bethe Ansatz solution. Explicit examples given are a mixed spin-1

2

spin-1 ladder, a mixed spin-1
2 spin-3

2 ladder and a spin-1 ladder with biquadratic
interactions.

KEY WORDS: Exactly solved models; Spin chains; Spin ladders; Bethe
Ansatz.

1. INTRODUCTION

It is well known that exact solutions of realistic models in statistical
mechanics are of immense importance. Beyond physical insights, they
provide benchmarks against which approximate techniques may be tested,
and in some cases, a stimulus to further research through their strong
predictive power. Let us recall a quote from Professor Baxter's book:(1)

Basically, I suppose the justification for studying these lattice models is very
simple: they are relevant and they can be solved, so why not do so and see what
they tell us?

This is precisely the spirit of our recent work on ladder models, which
are systems of coupled quantum spin chains. A number of exactly solved
spin ladders have been found.3 Here by exactly solved we mean integrable
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in the Yang�Baxter sense, with a corresponding Bethe Ansatz solution.4

A particularly neat construction is that given in refs. 5, 7, and 11. There it
is shown that integrable spin models constructed from the fundamental
representation of the algebras su(N ), so(N ) and sp(N ), where N=2n, can
be reinterpreted as n-leg spin-1

2 ladder models. Here we show that mixed
spin integrable ladder models can be constructed from the su(N ) family for
any N.

The 2-leg spin-1
2 ladder model of Wang (5) is of considerable interest. It

differs from the experimentally significant(15, 16) spin-1
2 Heisenberg ladder

through a four-body spin interaction, which is necessary to make the model
solvable. Such a four-spin interaction term has been introduced on physical
grounds(17) (see also ref. 18). In Wang's model, the effect of this term is to
shift the critical value of the rung coupling J at which the model becomes
massive. In the integrable model the Heisenberg rung coupling breaks the
underlying su(4) symmetry and appears as a chemical potential term in the
Bethe Ansatz solution. Wang's model was shown to be part of an su(N )
family of ladder models.(7) The phase diagram has been calculated for the
3-leg ladder model, which includes the 3-leg spin tube.(19, 20) These calcula-
tions reveal magnetisation plateaus(21, 22) in the presence of a magnetic
field.(20) Moreover, the exact magnetic phase diagrams are seen to be in
qualitative agreement with those of the n-leg Heisenberg ladders.(22)

The solvable ladder models are thus seen to be of relevance. This is
largely because they incorporate the same Heisenberg rung interactions as
the Heisenberg ladders. It is well known that the rung interactions drive
the physics of the ladder systems.(15, 16) Here we present new families of
solvable mixed spin ladders.

This paper is arranged as follows. In Section 2 we review the basic
ingredients of the su(N ) lattice models and their Bethe Ansatz solution.
Then in Section 3 we construct the related mixed spin ladder models. In
Section 4 we consider the rung interactions which preserve integrability.
Some explicit examples are given in Section 5.

2. suoNp MODELS

We recall that an integrable spin-S chain can be constructed from a
solution of the Yang�Baxter equation. Here we briefly review this construc-
tion for the case of the su(N ) algebras. The Chevalley generators in the
fundamental representation of the su(N ) algebra are given by

X +
: =E:, :+1 , X &

: =E:+1, : , H:=E::&E:+1, :+1 (1)
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for 1�:�N&1. The N_N matrices E:; have a 1 in the : th row and ; th
column and zeros everywhere else. These generators satisfy the defining
relations of su(N ),

[X +
: , X &

; ]=$:;H: , [H: , X \
; ]=\a:; X \

; , [H: , H;]=0 (2)

Here, a:; are the Cartan matrix elements corresponding to the AN&1

Dynkin diagram, given by

2 :=;
a:;={&1 :=;\1 (3)

0 otherwise

From the Chevalley generators one may construct a spin-(N&1)�2 operator
given by

(S\) (N )= :
N&1

:=1

- :(N&:) X \
: , (S z) (N )= 1

2 :
N&1

:=1

:(N&:) H: (4)

where S\=Sx\iS y. These satisfy the su(2) relations.
In terms of the su(N ) elements a solution of the Yang�Baxter equation

is given by

P(N )= :
N

:, ;=1

E:; �E;: (5)

It follows that the following Hamiltonian is integrable,

H= :
L

i=1

P (N )
i, i+1 (6)

where P (N )
i, j acts as the permutator (5) on the i th and j th factor in the

Hilbert space }L
i=1 CN

i and as the identity everywhere else. H can be
diagonalized using the Bethe Ansatz. The Bethe Ansatz equations are well
known, (23) and given by

\
* (1)

j &i�2
* (1)

j +i�2+
L

= `
M1

k{ j

* (1)
j &* (1)

k &i

* (1)
j &* (1)

k +i
`
M2

k=1

* (1)
j &* (2)

k +i�2
* (1)

j &* (2)
k &i�2

(7)

`
Mr

k{ j

* (r)
j &* (r)

k &i

* (r)
j &* (r)

k +i
= `

Mr&1

k=1

* (r)
j &* (r&1)

k &i�2
* (r)

j &* (r&1)
k +i�2

`
Mr+1

k=1

* (r)
j &* (r+1)

k &i�2
* (r)

j &* (r+1)
k +i�2
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Here j=1,..., Mr with r=2,..., N&1 and MN=0. The eigenenergies of H
are given by

E=& :
M1

j=1

1
(* (1)

j )2+1�4
(8)

The Hamiltonian (6) can be interpreted as that of a spin-S chain by
the identification

P (N )
i, i+1= :

N&1

:=0

(&)N&1&: `
N&1

;{:

S (N )
i } S (N )

i+1&x;

x:&x;
(9)

where x:= 1
2 :(:+1)&S(S+1) and N=2S+1.(7) The components of the

spin operator S(N ) are defined by (4). In the simplest case, S= 1
2 , one

recovers the Heisenberg model,

P(2)
i, i+1= 1

2 (1+_ } _) (10)

in terms of the Pauli matrices _.
As an historical aside, we note that the su(3) case of the Bethe equa-

tions (7) appeared 30 years ago in a paper by Baxter, with regard to the
Bethe Ansatz solution of a colouring problem on the honeycomb lattice.(24)

The su(3) chain, in terms of spin-1 operators, was first solved by Uimin.(25)

3. LADDERS

A key point in the construction is that for every factor p of N, the
matrix E:; can be interpreted as acting on C p�CN�p, i.e.,

E (N )
:; =E ( p)

:$;$ �E (N�p)
:";" (11)

where :=(N�p)(:$&1)+:". It follows that the permutator (5) can be
rewritten as

P(N )= :
p

:$, ;$=1

:
N�p

:", ;"=1

E:$;$�E:";"�E;$:$ �E;":" (12)

=[P( p)�P(N�p)]

Here, the brackets indicate that we should order the factors in the tensor
product in definition (5) of P(N ) according to the first line in (12). Accord-
ingly, via the correspondence (9), the local Hamiltonian may be interpreted
as that of a ladder with spin-( p&1)�2 degrees of freedom on one leg and
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spin-(N& p)�2p on the other leg. In the case of N=4, p=2 this amounts
to

H= :
L

i=1

1
4 (1+_i, 1 } _i+1, 1)(1+_i, 2 } _i+1, 2) (13)

In general, any factorization of N,

N= `
q

j=1

pmj
j , :

q

j=1

mj=n (14)

will give rise to an n-leg mixed spin ladder, with spin-( pj&1)�2 on mj legs,
with Hamiltonian

H= :
L

i=1
{}

q

j=1

}
mj

k=1

P ( pj)
i, i+1= (15)

In fact, there are (n!�(m1 ! } } } mq !)) equivalent ladders depending on the
ordering of the different spin degrees of freedom on the legs. Again, in the
simple case of N=2n and p1=2, m1=n, one finds,

H= :
L

i=1

1
2n `

n

l=1

(1+_i, l } _ i+1, l) (16)

In the following we will no longer need to specify if some factors pj are
equal and we will therefore drop the detailed notation (14). We will write
N=>n

j=1 pj where pj 's are allowed to be the same.
It is worth mentioning that the above procedure can also be carried

out for fermionic ladders that are obtained from a graded permutation
operator.(9, 10) In such a way one may construct mixed extended t&J and
Hubbard ladder models.

The simplicity of the above construction lies in the simple factorisation
(12) property of the permutator. It is possible however to construct
anisotropic ladder models from R-matrices related to the q-deformed su(N )
algebras.

4. RUNG INTERACTIONS

For any two factors from (15), the product of their respective spin
components commutes with (15). Indeed, it can be readily verified using
the definitions (1), (4) and (5), that

[(S a) ( pk)
i, k � (Sa) ( pl )

i, l +(S a) ( pk)
i+1, k� (Sa) ( pl )

i+1, l , [P ( pk)
i, i+1�P ( pl )

i, i+1]]=0 (17)
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It thus follows that one can put XYZ type interactions on the rungs which
commute with the Hamiltonian (15). This means that the ladder
Hamiltonian

H= :
L

i=1
_{}

n

j=1

P ( pj)
i, i+1=+ :

n

j<k

:
3

a=1

Ja( j, k)(S a) ( pj)
i � (S a) ( pk)

i & (18)

is integrable. A magnetic field term may be added to this Hamiltonian
without destroying the integrability.

In general the rung couplings and magnetic field appear as chemical
potential terms in the Bethe Ansatz solutions, i.e., they do not appear in
the Bethe equations (7), only as additional terms in the eigenvalue expres-
sion (8). This is typical of this class of ladder model.

5. EXAMPLES

The result (18) contains previously known examples. For N=2n and
the choice Ja( j, k)=2J$k, j+1 it reduces to the n-leg spin-1

2 model(7)

H= :
L

i=1
_ 1

2n `
n

l=1

(1+_ i, l } _i+1, l)+
1
2

J :
n

l=1

_ i, l } _i, l+1& (19)

For n=2 this is the model discussed by Wang.(5)

Another interesting example is a mixed spin ladder, with spin-1
2 on one

leg and spin-1 on the other. The Hamiltonian is given by

H= :
L

i=1

[ 1
2 (1+_i } _i+1)[(Si } S i+1)2+Si } Si+1&1]+J_ i } S i ] (20)

where we have taken the rung interactions to be isotropic. This model is
based on the su(6) Bethe equations. For this model the two-site rung
Hamiltonian consists of a doublet and a quadruplet, so the model remains
critical for large rung coupling. On the other hand, the mixed spin-1

2 spin-3
2

model, with Hamiltonian

H= :
L

i=1

[ 1
2 (1+_i } _i+1)[ 2

9 (Si } Si+1)3+ 11
18 (Si } Si+1)2

& 9
8Si } Si+1& 67

32]+J_i } Si ] (21)

exhibits a transition to a massive phase at some finite rung coupling J.
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The other example we mention here is the spin-1 ladder, with
Hamiltonian

H= :
L

i=1

[[(S i, 1 } Si+1, 1)2+Si, 1 } Si+1, 1&1][(Si, 2 } Si+1, 2)2

+Si, 2 } Si+1, 2&1]+JSi, 1 } Si, 2] (22)

This model becomes massive at Jc=4, with the gap opening up linearly
with J.

We hope to report on the physical properties of these new models in
the near future.
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